A unifying framework for interpreting and predicting mutualistic systems

Biological complexity has impeded our ability to predict the dynamics of mutualistic interactions. Here, the authors deduce a general rule to predict outcomes of mutualistic systems and introduce an approach that permits making predictions even in the absence of knowledge of mechanistic details.

Guardado en:
Detalles Bibliográficos
Autores principales: Feilun Wu, Allison J. Lopatkin, Daniel A. Needs, Charlotte T. Lee, Sayan Mukherjee, Lingchong You
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ada55e74f87742d6b7bca577b9e86383
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ada55e74f87742d6b7bca577b9e86383
record_format dspace
spelling oai:doaj.org-article:ada55e74f87742d6b7bca577b9e863832021-12-02T15:35:39ZA unifying framework for interpreting and predicting mutualistic systems10.1038/s41467-018-08188-52041-1723https://doaj.org/article/ada55e74f87742d6b7bca577b9e863832019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-08188-5https://doaj.org/toc/2041-1723Biological complexity has impeded our ability to predict the dynamics of mutualistic interactions. Here, the authors deduce a general rule to predict outcomes of mutualistic systems and introduce an approach that permits making predictions even in the absence of knowledge of mechanistic details.Feilun WuAllison J. LopatkinDaniel A. NeedsCharlotte T. LeeSayan MukherjeeLingchong YouNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Feilun Wu
Allison J. Lopatkin
Daniel A. Needs
Charlotte T. Lee
Sayan Mukherjee
Lingchong You
A unifying framework for interpreting and predicting mutualistic systems
description Biological complexity has impeded our ability to predict the dynamics of mutualistic interactions. Here, the authors deduce a general rule to predict outcomes of mutualistic systems and introduce an approach that permits making predictions even in the absence of knowledge of mechanistic details.
format article
author Feilun Wu
Allison J. Lopatkin
Daniel A. Needs
Charlotte T. Lee
Sayan Mukherjee
Lingchong You
author_facet Feilun Wu
Allison J. Lopatkin
Daniel A. Needs
Charlotte T. Lee
Sayan Mukherjee
Lingchong You
author_sort Feilun Wu
title A unifying framework for interpreting and predicting mutualistic systems
title_short A unifying framework for interpreting and predicting mutualistic systems
title_full A unifying framework for interpreting and predicting mutualistic systems
title_fullStr A unifying framework for interpreting and predicting mutualistic systems
title_full_unstemmed A unifying framework for interpreting and predicting mutualistic systems
title_sort unifying framework for interpreting and predicting mutualistic systems
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/ada55e74f87742d6b7bca577b9e86383
work_keys_str_mv AT feilunwu aunifyingframeworkforinterpretingandpredictingmutualisticsystems
AT allisonjlopatkin aunifyingframeworkforinterpretingandpredictingmutualisticsystems
AT danielaneeds aunifyingframeworkforinterpretingandpredictingmutualisticsystems
AT charlottetlee aunifyingframeworkforinterpretingandpredictingmutualisticsystems
AT sayanmukherjee aunifyingframeworkforinterpretingandpredictingmutualisticsystems
AT lingchongyou aunifyingframeworkforinterpretingandpredictingmutualisticsystems
AT feilunwu unifyingframeworkforinterpretingandpredictingmutualisticsystems
AT allisonjlopatkin unifyingframeworkforinterpretingandpredictingmutualisticsystems
AT danielaneeds unifyingframeworkforinterpretingandpredictingmutualisticsystems
AT charlottetlee unifyingframeworkforinterpretingandpredictingmutualisticsystems
AT sayanmukherjee unifyingframeworkforinterpretingandpredictingmutualisticsystems
AT lingchongyou unifyingframeworkforinterpretingandpredictingmutualisticsystems
_version_ 1718386495874662400