Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry

Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.

Guardado en:
Detalles Bibliográficos
Autores principales: Andrij Vasylenko, Jacinthe Gamon, Benjamin B. Duff, Vladimir V. Gusev, Luke M. Daniels, Marco Zanella, J. Felix Shin, Paul M. Sharp, Alexandra Morscher, Ruiyong Chen, Alex R. Neale, Laurence J. Hardwick, John B. Claridge, Frédéric Blanc, Michael W. Gaultois, Matthew S. Dyer, Matthew J. Rosseinsky
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ada6eb69fea0458aa467799a13aadb44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ada6eb69fea0458aa467799a13aadb44
record_format dspace
spelling oai:doaj.org-article:ada6eb69fea0458aa467799a13aadb442021-12-02T18:14:09ZElement selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry10.1038/s41467-021-25343-72041-1723https://doaj.org/article/ada6eb69fea0458aa467799a13aadb442021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25343-7https://doaj.org/toc/2041-1723Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.Andrij VasylenkoJacinthe GamonBenjamin B. DuffVladimir V. GusevLuke M. DanielsMarco ZanellaJ. Felix ShinPaul M. SharpAlexandra MorscherRuiyong ChenAlex R. NealeLaurence J. HardwickJohn B. ClaridgeFrédéric BlancMichael W. GaultoisMatthew S. DyerMatthew J. RosseinskyNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Andrij Vasylenko
Jacinthe Gamon
Benjamin B. Duff
Vladimir V. Gusev
Luke M. Daniels
Marco Zanella
J. Felix Shin
Paul M. Sharp
Alexandra Morscher
Ruiyong Chen
Alex R. Neale
Laurence J. Hardwick
John B. Claridge
Frédéric Blanc
Michael W. Gaultois
Matthew S. Dyer
Matthew J. Rosseinsky
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
description Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.
format article
author Andrij Vasylenko
Jacinthe Gamon
Benjamin B. Duff
Vladimir V. Gusev
Luke M. Daniels
Marco Zanella
J. Felix Shin
Paul M. Sharp
Alexandra Morscher
Ruiyong Chen
Alex R. Neale
Laurence J. Hardwick
John B. Claridge
Frédéric Blanc
Michael W. Gaultois
Matthew S. Dyer
Matthew J. Rosseinsky
author_facet Andrij Vasylenko
Jacinthe Gamon
Benjamin B. Duff
Vladimir V. Gusev
Luke M. Daniels
Marco Zanella
J. Felix Shin
Paul M. Sharp
Alexandra Morscher
Ruiyong Chen
Alex R. Neale
Laurence J. Hardwick
John B. Claridge
Frédéric Blanc
Michael W. Gaultois
Matthew S. Dyer
Matthew J. Rosseinsky
author_sort Andrij Vasylenko
title Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_short Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_full Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_fullStr Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_full_unstemmed Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_sort element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ada6eb69fea0458aa467799a13aadb44
work_keys_str_mv AT andrijvasylenko elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT jacinthegamon elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT benjaminbduff elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT vladimirvgusev elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT lukemdaniels elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT marcozanella elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT jfelixshin elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT paulmsharp elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT alexandramorscher elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT ruiyongchen elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT alexrneale elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT laurencejhardwick elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT johnbclaridge elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT fredericblanc elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT michaelwgaultois elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT matthewsdyer elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT matthewjrosseinsky elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
_version_ 1718378472020115456