Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ada6eb69fea0458aa467799a13aadb44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ada6eb69fea0458aa467799a13aadb44 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ada6eb69fea0458aa467799a13aadb442021-12-02T18:14:09ZElement selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry10.1038/s41467-021-25343-72041-1723https://doaj.org/article/ada6eb69fea0458aa467799a13aadb442021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25343-7https://doaj.org/toc/2041-1723Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.Andrij VasylenkoJacinthe GamonBenjamin B. DuffVladimir V. GusevLuke M. DanielsMarco ZanellaJ. Felix ShinPaul M. SharpAlexandra MorscherRuiyong ChenAlex R. NealeLaurence J. HardwickJohn B. ClaridgeFrédéric BlancMichael W. GaultoisMatthew S. DyerMatthew J. RosseinskyNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Andrij Vasylenko Jacinthe Gamon Benjamin B. Duff Vladimir V. Gusev Luke M. Daniels Marco Zanella J. Felix Shin Paul M. Sharp Alexandra Morscher Ruiyong Chen Alex R. Neale Laurence J. Hardwick John B. Claridge Frédéric Blanc Michael W. Gaultois Matthew S. Dyer Matthew J. Rosseinsky Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
description |
Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized. |
format |
article |
author |
Andrij Vasylenko Jacinthe Gamon Benjamin B. Duff Vladimir V. Gusev Luke M. Daniels Marco Zanella J. Felix Shin Paul M. Sharp Alexandra Morscher Ruiyong Chen Alex R. Neale Laurence J. Hardwick John B. Claridge Frédéric Blanc Michael W. Gaultois Matthew S. Dyer Matthew J. Rosseinsky |
author_facet |
Andrij Vasylenko Jacinthe Gamon Benjamin B. Duff Vladimir V. Gusev Luke M. Daniels Marco Zanella J. Felix Shin Paul M. Sharp Alexandra Morscher Ruiyong Chen Alex R. Neale Laurence J. Hardwick John B. Claridge Frédéric Blanc Michael W. Gaultois Matthew S. Dyer Matthew J. Rosseinsky |
author_sort |
Andrij Vasylenko |
title |
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_short |
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_full |
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_fullStr |
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_full_unstemmed |
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_sort |
element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ada6eb69fea0458aa467799a13aadb44 |
work_keys_str_mv |
AT andrijvasylenko elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT jacinthegamon elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT benjaminbduff elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT vladimirvgusev elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT lukemdaniels elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT marcozanella elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT jfelixshin elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT paulmsharp elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT alexandramorscher elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT ruiyongchen elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT alexrneale elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT laurencejhardwick elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT johnbclaridge elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT fredericblanc elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT michaelwgaultois elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT matthewsdyer elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT matthewjrosseinsky elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry |
_version_ |
1718378472020115456 |