Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry

Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Andrij Vasylenko, Jacinthe Gamon, Benjamin B. Duff, Vladimir V. Gusev, Luke M. Daniels, Marco Zanella, J. Felix Shin, Paul M. Sharp, Alexandra Morscher, Ruiyong Chen, Alex R. Neale, Laurence J. Hardwick, John B. Claridge, Frédéric Blanc, Michael W. Gaultois, Matthew S. Dyer, Matthew J. Rosseinsky
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/ada6eb69fea0458aa467799a13aadb44
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!