Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.
Guardado en:
Autores principales: | Andrij Vasylenko, Jacinthe Gamon, Benjamin B. Duff, Vladimir V. Gusev, Luke M. Daniels, Marco Zanella, J. Felix Shin, Paul M. Sharp, Alexandra Morscher, Ruiyong Chen, Alex R. Neale, Laurence J. Hardwick, John B. Claridge, Frédéric Blanc, Michael W. Gaultois, Matthew S. Dyer, Matthew J. Rosseinsky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ada6eb69fea0458aa467799a13aadb44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking
por: David Stewart, et al.
Publicado: (2017) -
Experimental verification of the field theory of specific heat with the scaling in crystalline matter
por: Yuri Vladimirovich Gusev
Publicado: (2021) -
Unsupervised Learning Approach for Comparing Multiple Transposon Insertion Sequencing Studies
por: Troy P. Hubbard, et al.
Publicado: (2019) -
Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry
por: Christopher J. Bartel, et al.
Publicado: (2018) -
Unsupervised clustering and epigenetic classification of single cells
por: Mahdi Zamanighomi, et al.
Publicado: (2018)