Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.
Enregistré dans:
Auteurs principaux: | Andrij Vasylenko, Jacinthe Gamon, Benjamin B. Duff, Vladimir V. Gusev, Luke M. Daniels, Marco Zanella, J. Felix Shin, Paul M. Sharp, Alexandra Morscher, Ruiyong Chen, Alex R. Neale, Laurence J. Hardwick, John B. Claridge, Frédéric Blanc, Michael W. Gaultois, Matthew S. Dyer, Matthew J. Rosseinsky |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ada6eb69fea0458aa467799a13aadb44 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking
par: David Stewart, et autres
Publié: (2017) -
Experimental verification of the field theory of specific heat with the scaling in crystalline matter
par: Yuri Vladimirovich Gusev
Publié: (2021) -
Unsupervised Learning Approach for Comparing Multiple Transposon Insertion Sequencing Studies
par: Troy P. Hubbard, et autres
Publié: (2019) -
Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry
par: Christopher J. Bartel, et autres
Publié: (2018) -
Unsupervised clustering and epigenetic classification of single cells
par: Mahdi Zamanighomi, et autres
Publié: (2018)