Controlling plasmon-exciton interactions through photothermal reshaping

We investigated the plasmon-exciton interactions in an individual gold nanorod (GNR) with monolayer MoS2 at room temperature with the single-particle spectroscopy technique. To control the plasmon-exciton interaction, we tuned the local surface plasmon resonance of an individual GNR in-situ by emplo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hu Aiqin, Liu Shuai, Zhao Jingyi, Wen Te, Zhang Weidong, Gong Qihuang, Meng Yongqiang, Ye Yu, Lu Guowei
Formato: article
Lenguaje:EN
Publicado: Institue of Optics and Electronics, Chinese Academy of Sciences 2020
Materias:
Acceso en línea:https://doaj.org/article/adb3655fad8442979896eb860da7463f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We investigated the plasmon-exciton interactions in an individual gold nanorod (GNR) with monolayer MoS2 at room temperature with the single-particle spectroscopy technique. To control the plasmon-exciton interaction, we tuned the local surface plasmon resonance of an individual GNR in-situ by employing the photothermal reshaping effect. The scattering spectra of the GNR-MoS2 hybrids exhibited two dips at the frequencies of the A and B excitons of monolayer MoS2, which were caused by the plasmon-induced resonance energy transfer effect. The resonance energy transfer rate increased when the surface plasmon resonance of the nanorod matched well with the exciton transition energy. Also, we demonstrated that the plasmon-enhanced fluorescence process dominated the photoluminescence of the GNR-MoS2 hybrid. These results provide a flexible way to control the plasmon-exciton interaction in an all-solid-state operating system at room temperature.