Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary
Abstract Studying the carbon dynamics of estuarine sediment is crucial to understanding of carbon cycle in the coastal ocean. This study is to evaluate the mechanisms regulating the dynamics of organic (TOC) and inorganic carbon (TIC) in surface sediment of the Yellow River Estuary (YRE). Based on d...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/adb780865b2046edb6abcd1c0dc0c73a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:adb780865b2046edb6abcd1c0dc0c73a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:adb780865b2046edb6abcd1c0dc0c73a2021-12-02T15:08:11ZOrganic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary10.1038/s41598-018-29200-42045-2322https://doaj.org/article/adb780865b2046edb6abcd1c0dc0c73a2018-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-29200-4https://doaj.org/toc/2045-2322Abstract Studying the carbon dynamics of estuarine sediment is crucial to understanding of carbon cycle in the coastal ocean. This study is to evaluate the mechanisms regulating the dynamics of organic (TOC) and inorganic carbon (TIC) in surface sediment of the Yellow River Estuary (YRE). Based on data of 15 surface sediment cores, we found that TIC (6.3–20.1 g kg−1) was much higher than TOC (0.2–4.4 g kg−1). Both TOC and TIC were generally higher to the north than to the south, primarily due to the differences in kinetic energy level (i.e., higher to the south). Our analysis suggested that TOC was mainly from marine sources in the YER, except in the southern shallow bay where approximately 75% of TOC was terrigenous. The overall low levels of TOC were due to profound resuspension that could cause enhanced decomposition. On the other hand, high levels of TIC resulted partly from higher rates of biological production, and partly from decomposition of TOC associated with sediment resuspension. The isotopic signiture in TIC seems to imply that the latter is dominant in forming more TIC in the YRE, and there may be transfer of OC to IC in the water column.Zhitong YuXiujun WangGuangxuan HanXingqi LiuEnlou ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-10 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Zhitong Yu Xiujun Wang Guangxuan Han Xingqi Liu Enlou Zhang Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary |
description |
Abstract Studying the carbon dynamics of estuarine sediment is crucial to understanding of carbon cycle in the coastal ocean. This study is to evaluate the mechanisms regulating the dynamics of organic (TOC) and inorganic carbon (TIC) in surface sediment of the Yellow River Estuary (YRE). Based on data of 15 surface sediment cores, we found that TIC (6.3–20.1 g kg−1) was much higher than TOC (0.2–4.4 g kg−1). Both TOC and TIC were generally higher to the north than to the south, primarily due to the differences in kinetic energy level (i.e., higher to the south). Our analysis suggested that TOC was mainly from marine sources in the YER, except in the southern shallow bay where approximately 75% of TOC was terrigenous. The overall low levels of TOC were due to profound resuspension that could cause enhanced decomposition. On the other hand, high levels of TIC resulted partly from higher rates of biological production, and partly from decomposition of TOC associated with sediment resuspension. The isotopic signiture in TIC seems to imply that the latter is dominant in forming more TIC in the YRE, and there may be transfer of OC to IC in the water column. |
format |
article |
author |
Zhitong Yu Xiujun Wang Guangxuan Han Xingqi Liu Enlou Zhang |
author_facet |
Zhitong Yu Xiujun Wang Guangxuan Han Xingqi Liu Enlou Zhang |
author_sort |
Zhitong Yu |
title |
Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary |
title_short |
Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary |
title_full |
Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary |
title_fullStr |
Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary |
title_full_unstemmed |
Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary |
title_sort |
organic and inorganic carbon and their stable isotopes in surface sediments of the yellow river estuary |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/adb780865b2046edb6abcd1c0dc0c73a |
work_keys_str_mv |
AT zhitongyu organicandinorganiccarbonandtheirstableisotopesinsurfacesedimentsoftheyellowriverestuary AT xiujunwang organicandinorganiccarbonandtheirstableisotopesinsurfacesedimentsoftheyellowriverestuary AT guangxuanhan organicandinorganiccarbonandtheirstableisotopesinsurfacesedimentsoftheyellowriverestuary AT xingqiliu organicandinorganiccarbonandtheirstableisotopesinsurfacesedimentsoftheyellowriverestuary AT enlouzhang organicandinorganiccarbonandtheirstableisotopesinsurfacesedimentsoftheyellowriverestuary |
_version_ |
1718388272256778240 |