Deep Convolutional Neural Networks for Tea Tree Pest Recognition and Diagnosis
Due to the benefits of convolutional neural networks (CNNs) in image classification, they have been extensively used in the computerized classification and focus of crop pests. The intention of the current find out about is to advance a deep convolutional neural network to mechanically identify 14 s...
Guardado en:
Autores principales: | Jing Chen, Qi Liu, Lingwang Gao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/adbe67f04624406684882f9b9d6d5b25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fused-Deep-Features Based Grape Leaf Disease Diagnosis
por: Yun Peng, et al.
Publicado: (2021) -
Comparison of Deep Neural Network Models and Effectiveness of EMG Signal Feature Value for Estimating Dorsiflexion
por: Muhammad Akmal Bin Mohammed Zaffir, et al.
Publicado: (2021) -
Tea
Publicado: (1980) -
AE-MLP: A Hybrid Deep Learning Approach for DDoS Detection and Classification
por: Yuanyuan Wei, et al.
Publicado: (2021) -
Phenolic, Carotenoid and Saccharide Compositions of Vietnamese <i>Camellia sinensis</i> Teas and Herbal Teas
por: Danh C. Vu, et al.
Publicado: (2021)