Utilization of Chebyshev collocation approach for differential, differential-difference and integro-differential equations
Numerical solutions to differential and integral equations have been a very active field of research. The necessary tools to solving differential equations can add much fuel for acceleration of scientific development. Therefore, it is quite challenging for scientists, especially mathematicians, to w...
Guardado en:
Autores principales: | Hajra Zeb, Muhammad Sohail, Hussam Alrabaiah, Tahir Naseem |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/add633c96e204422a146344866392423 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A new approach for solving linear fractional integro-differential equations and multi variable order fractional differential equations
por: Ghomanjani,F.
Publicado: (2020) -
Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions
por: Aouane,Abdeldjalil, et al.
Publicado: (2020) -
Electronic journal of differential equations
Publicado: (1993) -
Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods
por: Saleh,M.H, et al.
Publicado: (2013) -
On Fractional Integro-differential Equations with State-Dependent Delay and Non-Instantaneous Impulses
por: Aissani,Khalida, et al.
Publicado: (2019)