Optimized Support Vector Machines Combined with Evolutionary Random Forest for Prediction of Back-Break Caused by Blasting Operation
Back-break is an adverse event in blasting works that causes the instability of mine walls, equipment collapsing, and reduction in effectiveness of drilling. Therefore, it boosts the total cost of mining operations. This investigation intends to develop optimized support vector machine models to for...
Guardado en:
Autores principales: | Qun Yu, Masoud Monjezi, Ahmed Salih Mohammed, Hesam Dehghani, Danial Jahed Armaghani, Dmitrii Vladimirovich Ulrikh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/addc2e189bd64ea0b6dac80c2d80fd60 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DMFO-CD: A Discrete Moth-Flame Optimization Algorithm for Community Detection
por: Mohammad H. Nadimi-Shahraki, et al.
Publicado: (2021) -
Optimization of reservoir operation at Klang Gate Dam utilizing a whale optimization algorithm and a Lévy flight and distribution enhancement technique
por: V. Lai, et al.
Publicado: (2021) -
GENDER CLASSIFICATION ON SKELETAL REMAINS: EFFICIENCY OF METAHEURISTIC ALGORITHM METHOD AND OPTIMIZED BACK PROPAGATION NEURAL NETWORK
por: Nurul Liyana Hairuddin, et al.
Publicado: (2020) -
A Boosted Particle Swarm Method for Energy Efficiency Optimization of PRO Systems
por: Yingxue Chen, et al.
Publicado: (2021) -
Genetic Algorithms as Computational Methods for Finite-Dimensional Optimization
por: Nataliya Gulayeva, et al.
Publicado: (2021)