Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
In recent years, deep learning-based models have produced encouraging results for hyperspectral image (HSI) classification. Specifically, Convolutional Long Short-Term Memory (ConvLSTM) has shown good performance for learning valuable features and modeling long-term dependencies in spectral data. Ho...
Guardado en:
Autores principales: | Ghulam Farooque, Liang Xiao, Jingxiang Yang, Allah Bux Sargano |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/adf4712f0c9e405fad3ea9075b2e76ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Sequence-Based Network for Lung Diseases Detection in Chest CT
por: Jinkui Hao, et al.
Publicado: (2021) -
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
por: Dongxu Liu, et al.
Publicado: (2021) -
Hybrid Deep Spatio-Temporal Models for Traffic Flow Prediction on Holidays and Under Adverse Weather
por: Wensong Zhang, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021)