Attention-Guided deep atrous-residual U-Net architecture for automated gland segmentation in colon histopathology images
In digital pathology, gland segmentation plays a dominant part in the diagnosis and quantification of colon cancer. Thus, this paper presents a clinically relevant deep learning-based automated gland segmentation technique called Attention-Guided deep Atrous-Residual U-Net that aims to seize small a...
Guardado en:
Autores principales: | Manju Dabass, Sharda Vashisth, Rekha Vig |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae08adc062c449289554a5e385e86c3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synergistic Attention for Ship Instance Segmentation in SAR Images
por: Danpei Zhao, et al.
Publicado: (2021) -
Adversarial Learning with Bidirectional Attention for Visual Question Answering
por: Qifeng Li, et al.
Publicado: (2021) -
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
por: Udit Sharma, et al.
Publicado: (2021) -
Road crack segmentation using an attention residual U-Net with generative adversarial
por: Xing Hu, et al.
Publicado: (2021) -
Prediction of Protein–Protein Interaction Sites Based on Stratified Attentional Mechanisms
por: Minli Tang, et al.
Publicado: (2021)