Numerical study of energy dissipation and block barriers in stepped spillways
In this research, the accuracy of the Flow-3D numerical model in the flow simulation in a stepped spillway was probed using data obtained from the physical model. In addition, the effects of block barriers on the energy dissipation rate were investigated. To adopt a proper turbulent model, Renormali...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae168eafe5684f5f9404d02e2261c33c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this research, the accuracy of the Flow-3D numerical model in the flow simulation in a stepped spillway was probed using data obtained from the physical model. In addition, the effects of block barriers on the energy dissipation rate were investigated. To adopt a proper turbulent model, Renormalization Group k-ε, RNG k-ε, and standard k-ε models were employed. Then, the Flow-3D was run in five discharges for nine spillways with the ratios of block length to step length (Lb/l) and block height to step height (Hb/h) as 0.3, 0.4, and 0.5. The results indicated that both turbulent models had almost similar outcomes though the run time of the RNG k-ε model was shorter. The blocks with a shorter length in low ratios of Hb/h and the lengthier blocks in high ratios of Hb/h undergo more relative energy dissipation relative to the no-block situation. For Hb/h = 0.3 and Lb/l equal to 0.3, 0.4, and 0.5, the relative energy dissipation climbed on average as 8.5, 6.5, and 4.5% respectively, compared with the no-block case. The most influence exerted on relative energy dissipation was obtained via the blocks with Hb/h = Lb/l equal to 0.3 and 0.5 with respective increases of 8.6 and 8.4%. HIGHLIGHTS
The Flow-3D model applied to examine the effects of height and length of the block on the energy dissipation.;
As the discharge increases, the energy dissipation decreases and the effects of blocks increases.;
Shorter blocks at lower elevations and longer blocks at higher length had the highest energy dissipation.;
The blocks with length/height equal to 0.3 and 0.5 were assigned the most increase in energy dissipation.; |
---|