XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers.
Graph representations are traditionally used to represent protein structures in sequence design protocols in which the protein backbone conformation is known. This infrequently extends to machine learning projects: existing graph convolution algorithms have shortcomings when representing protein env...
Guardado en:
Autores principales: | Jack B Maguire, Daniele Grattarola, Vikram Khipple Mulligan, Eugene Klyshko, Hans Melo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae2e6f980baa4986ab84f8a0397965c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Extended fisheries recovery timelines in a changing environment
por: Gregory L. Britten, et al.
Publicado: (2017) -
The genomic timeline of cichlid fish diversification across continents
por: Michael Matschiner, et al.
Publicado: (2020) -
Sentence Compression Using BERT and Graph Convolutional Networks
por: Yo-Han Park, et al.
Publicado: (2021) -
Investigating of Asymmetric Timelines of Earning Due to Conservatism and Cost Stickiness
Publicado: (2014) -
Graph convolutional and attention models for entity classification in multilayer networks
por: Lorenzo Zangari, et al.
Publicado: (2021)