Limits to visual representational correspondence between convolutional neural networks and the human brain

Convolutional neural networks are increasingly used to model human vision. Here, the authors compare the performance of 14 different CNNs and human fMRI responses to real-world and artificial objects to show some fundamental differences exist between them.

Guardado en:
Detalles Bibliográficos
Autores principales: Yaoda Xu, Maryam Vaziri-Pashkam
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ae2ed8fe56e14ce88c735ba357973b94
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Convolutional neural networks are increasingly used to model human vision. Here, the authors compare the performance of 14 different CNNs and human fMRI responses to real-world and artificial objects to show some fundamental differences exist between them.