Limits to visual representational correspondence between convolutional neural networks and the human brain
Convolutional neural networks are increasingly used to model human vision. Here, the authors compare the performance of 14 different CNNs and human fMRI responses to real-world and artificial objects to show some fundamental differences exist between them.
Guardado en:
Autores principales: | Yaoda Xu, Maryam Vaziri-Pashkam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae2ed8fe56e14ce88c735ba357973b94 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021) -
Joint representation of color and form in convolutional neural networks: A stimulus-rich network perspective.
por: JohnMark Taylor, et al.
Publicado: (2021) -
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
por: Omid Bazgir, et al.
Publicado: (2020) -
Qualitative similarities and differences in visual object representations between brains and deep networks
por: Georgin Jacob, et al.
Publicado: (2021) -
Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
por: Khawla Seddiki, et al.
Publicado: (2020)