BiTTM: A Core Biterms-Based Topic Model for Targeted Analysis
While most of the existing topic models perform a <i>full analysis</i> on a set of documents to discover all topics, it is noticed recently that in many situations users are interested in fine-grained topics related to some specific aspects only. As a result, <i>targeted analysis&l...
Guardado en:
Autores principales: | Jiamiao Wang, Ling Chen, Lei Li, Xindong Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae353802e15141c89424cc248405e4ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning-based Sentiment Analysis and Topic Modeling on Tourism During Covid-19 Pandemic
por: Ram Krishn Mishra, et al.
Publicado: (2021) -
Dynamic Analysis of User-Role and Topic-Influence for Topic Propagation in Social Networks
por: Jing Wang, et al.
Publicado: (2021) -
Topic-Based Document-Level Sentiment Analysis Using Contextual Cues
por: Ciprian-Octavian Truică, et al.
Publicado: (2021) -
Construction health and safety: A topic landscape study
por: Cao Xiaorui, et al.
Publicado: (2021) -
Uncovering dynamic textual topics that explain crime
por: Seppo Virtanen
Publicado: (2021)