Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis
Abstract The ultimate goal of machine learning-based myoelectric control is simultaneous and independent control of multiple degrees of freedom (DOFs), including wrist and digit artificial joints. For prosthetic finger control, regression-based methods are typically used to reconstruct position/velo...
Enregistré dans:
Auteurs principaux: | Agamemnon Krasoulis, Kianoush Nazarpour |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ae3e769ae891484ca5e2ce83d4b4cd4c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition
par: Veronika Spieker, et autres
Publié: (2021) -
Multi-Ideology ISIS/Jihadist White Supremacist (MIWS) Dataset for Multi-Class Extremism Text Classification
par: Mayur Gaikwad, et autres
Publié: (2021) -
Multi-Class Parrot Image Classification Including Subspecies with Similar Appearance
par: Woohyuk Jang, et autres
Publié: (2021) -
Wideband circularly polarised antenna ‘multi‐input‐multi‐output’ for wireless UWB applications
par: Pillalamarri Laxman, et autres
Publié: (2021) -
Encoder-Decoder Multi-Step Trajectory Prediction Technology Based on LSTM
par: Li Qingyong, He Bing, Zhang Xianyang, Zhu Xiaoyu, Liu Gang
Publié: (2021)