Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis
Abstract The ultimate goal of machine learning-based myoelectric control is simultaneous and independent control of multiple degrees of freedom (DOFs), including wrist and digit artificial joints. For prosthetic finger control, regression-based methods are typically used to reconstruct position/velo...
Guardado en:
Autores principales: | Agamemnon Krasoulis, Kianoush Nazarpour |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae3e769ae891484ca5e2ce83d4b4cd4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition
por: Veronika Spieker, et al.
Publicado: (2021) -
Multi-Ideology ISIS/Jihadist White Supremacist (MIWS) Dataset for Multi-Class Extremism Text Classification
por: Mayur Gaikwad, et al.
Publicado: (2021) -
Multi-Class Parrot Image Classification Including Subspecies with Similar Appearance
por: Woohyuk Jang, et al.
Publicado: (2021) -
Wideband circularly polarised antenna ‘multi‐input‐multi‐output’ for wireless UWB applications
por: Pillalamarri Laxman, et al.
Publicado: (2021) -
Encoder-Decoder Multi-Step Trajectory Prediction Technology Based on LSTM
por: Li Qingyong, He Bing, Zhang Xianyang, Zhu Xiaoyu, Liu Gang
Publicado: (2021)