Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
Summary: We developed Miscell, a self-supervised learning approach with deep neural network as latent feature encoder for mining information from single-cell transcriptomes. We demonstrated the capability of Miscell with canonical single-cell analysis tasks including delineation of single-cell clust...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae5873effb654cd6beaee306458de941 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ae5873effb654cd6beaee306458de941 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ae5873effb654cd6beaee306458de9412021-11-20T05:08:18ZMiscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome2589-004210.1016/j.isci.2021.103200https://doaj.org/article/ae5873effb654cd6beaee306458de9412021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589004221011688https://doaj.org/toc/2589-0042Summary: We developed Miscell, a self-supervised learning approach with deep neural network as latent feature encoder for mining information from single-cell transcriptomes. We demonstrated the capability of Miscell with canonical single-cell analysis tasks including delineation of single-cell clusters and identification of cluster-specific marker genes. We evaluated Miscell along with three state-of-the-art methods on three heterogeneous datasets. Miscell achieved at least comparable or better performance than the other methods by significant margin on a variety of clustering metrics such as adjusted rand index, normalized mutual information, and V-measure score. Miscell can identify cell-type specific markers by quantifying the influence of genes on cell clusters via deep learning approach.Hongru ShenYang LiMengyao FengXilin ShenDan WuChao ZhangYichen YangMeng YangJiani HuJilei LiuWei WangQiang ZhangFangfang SongJilong YangKexin ChenXiangchun LiElsevierarticleBiological sciencesNeural networksTranscriptomicsScienceQENiScience, Vol 24, Iss 11, Pp 103200- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biological sciences Neural networks Transcriptomics Science Q |
spellingShingle |
Biological sciences Neural networks Transcriptomics Science Q Hongru Shen Yang Li Mengyao Feng Xilin Shen Dan Wu Chao Zhang Yichen Yang Meng Yang Jiani Hu Jilei Liu Wei Wang Qiang Zhang Fangfang Song Jilong Yang Kexin Chen Xiangchun Li Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome |
description |
Summary: We developed Miscell, a self-supervised learning approach with deep neural network as latent feature encoder for mining information from single-cell transcriptomes. We demonstrated the capability of Miscell with canonical single-cell analysis tasks including delineation of single-cell clusters and identification of cluster-specific marker genes. We evaluated Miscell along with three state-of-the-art methods on three heterogeneous datasets. Miscell achieved at least comparable or better performance than the other methods by significant margin on a variety of clustering metrics such as adjusted rand index, normalized mutual information, and V-measure score. Miscell can identify cell-type specific markers by quantifying the influence of genes on cell clusters via deep learning approach. |
format |
article |
author |
Hongru Shen Yang Li Mengyao Feng Xilin Shen Dan Wu Chao Zhang Yichen Yang Meng Yang Jiani Hu Jilei Liu Wei Wang Qiang Zhang Fangfang Song Jilong Yang Kexin Chen Xiangchun Li |
author_facet |
Hongru Shen Yang Li Mengyao Feng Xilin Shen Dan Wu Chao Zhang Yichen Yang Meng Yang Jiani Hu Jilei Liu Wei Wang Qiang Zhang Fangfang Song Jilong Yang Kexin Chen Xiangchun Li |
author_sort |
Hongru Shen |
title |
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome |
title_short |
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome |
title_full |
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome |
title_fullStr |
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome |
title_full_unstemmed |
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome |
title_sort |
miscell: an efficient self-supervised learning approach for dissecting single-cell transcriptome |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/ae5873effb654cd6beaee306458de941 |
work_keys_str_mv |
AT hongrushen miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT yangli miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT mengyaofeng miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT xilinshen miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT danwu miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT chaozhang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT yichenyang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT mengyang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT jianihu miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT jileiliu miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT weiwang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT qiangzhang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT fangfangsong miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT jilongyang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT kexinchen miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome AT xiangchunli miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome |
_version_ |
1718419561124986880 |