Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome

Summary: We developed Miscell, a self-supervised learning approach with deep neural network as latent feature encoder for mining information from single-cell transcriptomes. We demonstrated the capability of Miscell with canonical single-cell analysis tasks including delineation of single-cell clust...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hongru Shen, Yang Li, Mengyao Feng, Xilin Shen, Dan Wu, Chao Zhang, Yichen Yang, Meng Yang, Jiani Hu, Jilei Liu, Wei Wang, Qiang Zhang, Fangfang Song, Jilong Yang, Kexin Chen, Xiangchun Li
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ae5873effb654cd6beaee306458de941
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ae5873effb654cd6beaee306458de941
record_format dspace
spelling oai:doaj.org-article:ae5873effb654cd6beaee306458de9412021-11-20T05:08:18ZMiscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome2589-004210.1016/j.isci.2021.103200https://doaj.org/article/ae5873effb654cd6beaee306458de9412021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589004221011688https://doaj.org/toc/2589-0042Summary: We developed Miscell, a self-supervised learning approach with deep neural network as latent feature encoder for mining information from single-cell transcriptomes. We demonstrated the capability of Miscell with canonical single-cell analysis tasks including delineation of single-cell clusters and identification of cluster-specific marker genes. We evaluated Miscell along with three state-of-the-art methods on three heterogeneous datasets. Miscell achieved at least comparable or better performance than the other methods by significant margin on a variety of clustering metrics such as adjusted rand index, normalized mutual information, and V-measure score. Miscell can identify cell-type specific markers by quantifying the influence of genes on cell clusters via deep learning approach.Hongru ShenYang LiMengyao FengXilin ShenDan WuChao ZhangYichen YangMeng YangJiani HuJilei LiuWei WangQiang ZhangFangfang SongJilong YangKexin ChenXiangchun LiElsevierarticleBiological sciencesNeural networksTranscriptomicsScienceQENiScience, Vol 24, Iss 11, Pp 103200- (2021)
institution DOAJ
collection DOAJ
language EN
topic Biological sciences
Neural networks
Transcriptomics
Science
Q
spellingShingle Biological sciences
Neural networks
Transcriptomics
Science
Q
Hongru Shen
Yang Li
Mengyao Feng
Xilin Shen
Dan Wu
Chao Zhang
Yichen Yang
Meng Yang
Jiani Hu
Jilei Liu
Wei Wang
Qiang Zhang
Fangfang Song
Jilong Yang
Kexin Chen
Xiangchun Li
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
description Summary: We developed Miscell, a self-supervised learning approach with deep neural network as latent feature encoder for mining information from single-cell transcriptomes. We demonstrated the capability of Miscell with canonical single-cell analysis tasks including delineation of single-cell clusters and identification of cluster-specific marker genes. We evaluated Miscell along with three state-of-the-art methods on three heterogeneous datasets. Miscell achieved at least comparable or better performance than the other methods by significant margin on a variety of clustering metrics such as adjusted rand index, normalized mutual information, and V-measure score. Miscell can identify cell-type specific markers by quantifying the influence of genes on cell clusters via deep learning approach.
format article
author Hongru Shen
Yang Li
Mengyao Feng
Xilin Shen
Dan Wu
Chao Zhang
Yichen Yang
Meng Yang
Jiani Hu
Jilei Liu
Wei Wang
Qiang Zhang
Fangfang Song
Jilong Yang
Kexin Chen
Xiangchun Li
author_facet Hongru Shen
Yang Li
Mengyao Feng
Xilin Shen
Dan Wu
Chao Zhang
Yichen Yang
Meng Yang
Jiani Hu
Jilei Liu
Wei Wang
Qiang Zhang
Fangfang Song
Jilong Yang
Kexin Chen
Xiangchun Li
author_sort Hongru Shen
title Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
title_short Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
title_full Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
title_fullStr Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
title_full_unstemmed Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
title_sort miscell: an efficient self-supervised learning approach for dissecting single-cell transcriptome
publisher Elsevier
publishDate 2021
url https://doaj.org/article/ae5873effb654cd6beaee306458de941
work_keys_str_mv AT hongrushen miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT yangli miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT mengyaofeng miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT xilinshen miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT danwu miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT chaozhang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT yichenyang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT mengyang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT jianihu miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT jileiliu miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT weiwang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT qiangzhang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT fangfangsong miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT jilongyang miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT kexinchen miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
AT xiangchunli miscellanefficientselfsupervisedlearningapproachfordissectingsinglecelltranscriptome
_version_ 1718419561124986880