Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
Summary: We developed Miscell, a self-supervised learning approach with deep neural network as latent feature encoder for mining information from single-cell transcriptomes. We demonstrated the capability of Miscell with canonical single-cell analysis tasks including delineation of single-cell clust...
Guardado en:
Autores principales: | Hongru Shen, Yang Li, Mengyao Feng, Xilin Shen, Dan Wu, Chao Zhang, Yichen Yang, Meng Yang, Jiani Hu, Jilei Liu, Wei Wang, Qiang Zhang, Fangfang Song, Jilong Yang, Kexin Chen, Xiangchun Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae5873effb654cd6beaee306458de941 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dissection of full-length transcriptome and metabolome of Dichocarpum (Ranunculaceae): implications in evolution of specialized metabolism of Ranunculales medicinal plants
por: Da-Cheng Hao, et al.
Publicado: (2021) -
Dissecting the single-cell transcriptomeunderlying chronic liver injury
por: Junjun Wang, et al.
Publicado: (2021) -
Comprehensive Transcriptome and Metabolic Profiling of Petal Color Development in Lycoris sprengeri
por: Feng Yang, et al.
Publicado: (2021) -
Transcriptome Profiling Reveals the Effects of Nitric Oxide on the Growth and Physiological Characteristics of Watermelon under Aluminum Stress
por: Yangxia Zheng, et al.
Publicado: (2021) -
Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress
por: Xun Liu, et al.
Publicado: (2021)