Deriving supply-side variables to extend geodemographic classification

This paper argues that there may be considerable advantages to including indicators within geodemographic systems that represent workplace-based characteristics and the commuting linkages between areas. Using the regional example of Yorkshire and Humberside in northern England, we indicate how a sui...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: James Debenham, Graham Clarke, John Stillwell
Formato: article
Lenguaje:DE
EN
FR
IT
PT
Publicado: Unité Mixte de Recherche 8504 Géographie-cités 2002
Materias:
Acceso en línea:https://doaj.org/article/ae58860a912b4bbfa453a7ab0602fee3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ae58860a912b4bbfa453a7ab0602fee3
record_format dspace
spelling oai:doaj.org-article:ae58860a912b4bbfa453a7ab0602fee32021-12-02T11:14:35ZDeriving supply-side variables to extend geodemographic classification1278-336610.4000/cybergeo.1671https://doaj.org/article/ae58860a912b4bbfa453a7ab0602fee32002-09-01T00:00:00Zhttp://journals.openedition.org/cybergeo/1671https://doaj.org/toc/1278-3366This paper argues that there may be considerable advantages to including indicators within geodemographic systems that represent workplace-based characteristics and the commuting linkages between areas. Using the regional example of Yorkshire and Humberside in northern England, we indicate how a suite of workplace-based and residence-workplace linkage variables relating to the labour market can be assembled and used alongside a suite of residence-based (or demand) variables to generate a new area classification. Spatial interaction models are calibrated to derive some of the variables that take into account area self-containment and catchment size.James DebenhamGraham ClarkeJohn StillwellUnité Mixte de Recherche 8504 Géographie-citésarticlegeodemographicslabour/labor marketinteractionGeography (General)G1-922DEENFRITPTCybergeo (2002)
institution DOAJ
collection DOAJ
language DE
EN
FR
IT
PT
topic geodemographics
labour/labor market
interaction
Geography (General)
G1-922
spellingShingle geodemographics
labour/labor market
interaction
Geography (General)
G1-922
James Debenham
Graham Clarke
John Stillwell
Deriving supply-side variables to extend geodemographic classification
description This paper argues that there may be considerable advantages to including indicators within geodemographic systems that represent workplace-based characteristics and the commuting linkages between areas. Using the regional example of Yorkshire and Humberside in northern England, we indicate how a suite of workplace-based and residence-workplace linkage variables relating to the labour market can be assembled and used alongside a suite of residence-based (or demand) variables to generate a new area classification. Spatial interaction models are calibrated to derive some of the variables that take into account area self-containment and catchment size.
format article
author James Debenham
Graham Clarke
John Stillwell
author_facet James Debenham
Graham Clarke
John Stillwell
author_sort James Debenham
title Deriving supply-side variables to extend geodemographic classification
title_short Deriving supply-side variables to extend geodemographic classification
title_full Deriving supply-side variables to extend geodemographic classification
title_fullStr Deriving supply-side variables to extend geodemographic classification
title_full_unstemmed Deriving supply-side variables to extend geodemographic classification
title_sort deriving supply-side variables to extend geodemographic classification
publisher Unité Mixte de Recherche 8504 Géographie-cités
publishDate 2002
url https://doaj.org/article/ae58860a912b4bbfa453a7ab0602fee3
work_keys_str_mv AT jamesdebenham derivingsupplysidevariablestoextendgeodemographicclassification
AT grahamclarke derivingsupplysidevariablestoextendgeodemographicclassification
AT johnstillwell derivingsupplysidevariablestoextendgeodemographicclassification
_version_ 1718396128900153344