Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
<p>Wind retrieval parameters, i.e. quality indicators and the two-dimensional variational ambiguity removal (2DVAR) analysis speeds, are explored with the aim to improve wind speed retrieval during rain for tropical regions. We apply the well-researched support vector machine (SVM) method in m...
Guardado en:
Autores principales: | X. Xu, A. Stoffelen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae696f049b6b4997a9058f4e32cb7fab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
por: H. Iwai, et al.
Publicado: (2021) -
Correction of wind bias for the lidar on board Aeolus using telescope temperatures
por: F. Weiler, et al.
Publicado: (2021) -
Four-dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations
por: R. Volz, et al.
Publicado: (2021) -
Triple-frequency radar retrieval of microphysical properties of snow
por: K. Mroz, et al.
Publicado: (2021) -
Assessing the feasibility of using a neural network to filter Orbiting Carbon Observatory 2 (OCO-2) retrievals at northern high latitudes
por: J. Mendonca, et al.
Publicado: (2021)