Classification of Long-Tailed Data Based on Bilateral-Branch Generative Network with Time-Supervised Strategy
In the face of the long-tailed data distribution that widely exists in real-world datasets, this paper proposes a bilateral-branch generative network model. The data of the second branch is constructed by resampling the generative network training method to improve the data quality. A bilateral-bran...
Guardado en:
Autores principales: | Yalin Huang, Yan-Hui Zhu, Zeng Zhigao, Yangkang Ou, Lingwei Kong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae74851cc5194039b3cbfd4bf0ff30fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparative Study on Heart Disease Prediction Using Feature Selection Techniques on Classification Algorithms
por: Kaushalya Dissanayake, et al.
Publicado: (2021) -
Anomaly Detection for Time Series with Difference Rate Sample Entropy and Generative Adversarial Networks
por: Keke Gao, et al.
Publicado: (2021) -
Equipment Maintenance Support Effectiveness Evaluation Based on Improved Generative Adversarial Network and Radial Basis Function Network
por: Zhen Li, et al.
Publicado: (2021) -
Feature fusion-based collaborative learning for knowledge distillation
por: Yiting Li, et al.
Publicado: (2021) -
The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway
por: Tianlin Pei, et al.
Publicado: (2021)