Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis

The function of glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) in neurodegenerative diseases has been widely reported; however, its role in the occurrence of glioma remains less explored. We obtained clinical data and transcriptome data from the Gene Expression Omnibus (GEO) and The Cance...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aoran Yang, Xinhuan Wang, Yaofeng Hu, Chao Shang, Yang Hong
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
R
Acceso en línea:https://doaj.org/article/ae7d91ba5e6346e88da972590805c716
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ae7d91ba5e6346e88da972590805c716
record_format dspace
spelling oai:doaj.org-article:ae7d91ba5e6346e88da972590805c7162021-11-29T00:55:51ZIdentification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis2314-614110.1155/2021/4542995https://doaj.org/article/ae7d91ba5e6346e88da972590805c7162021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4542995https://doaj.org/toc/2314-6141The function of glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) in neurodegenerative diseases has been widely reported; however, its role in the occurrence of glioma remains less explored. We obtained clinical data and transcriptome data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Hub gene’s expression differential analysis and survival analysis were conducted by browsing the Gene Expression Profiling Interactive Analysis (GEPIA) database, Human Protein Atlas database, and LOGpc database. We conducted a variation analysis of datasets obtained from GEO and TCGA and performed a weighted gene coexpression network analysis (WGCNA) using the R programming language (3.6.3). Kaplan-Meier (KM) analysis was used to calculate the prognostic value of GRIN1. Finally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Using STRING, we constructed a protein–protein interaction (PPI) network. Cytoscape software, a prerequisite of visualizing core genes, was installed, and CytoHubba detected the 10 most tumor-related core genes. We identified 185 differentially expressed genes (DEGs). GO and KEGG enrichment analyses illustrated that the identified DEGs are imperative in different biological functions and ascertained the potential pathways in which the DEGs may be enriched. The overall survival calculated by KM analysis showed that patients with lower expression of GRIN1 had worse prognoses than patients with higher expression of GRIN1 (p=0.004). The GEPIA and LOGpc databases were used to verify the expression difference of GRIN1 among GBM, LGG, and normal brain tissues. Ultimately, immunohistochemical assay results showed that GRIN1 was detected in normal tissue and not in the tumor specimens. Our results highlight a potential target for glioma treatment and will further our understanding of the molecular mechanisms underlying the treatment of glioma.Aoran YangXinhuan WangYaofeng HuChao ShangYang HongHindawi LimitedarticleMedicineRENBioMed Research International, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
spellingShingle Medicine
R
Aoran Yang
Xinhuan Wang
Yaofeng Hu
Chao Shang
Yang Hong
Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis
description The function of glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) in neurodegenerative diseases has been widely reported; however, its role in the occurrence of glioma remains less explored. We obtained clinical data and transcriptome data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Hub gene’s expression differential analysis and survival analysis were conducted by browsing the Gene Expression Profiling Interactive Analysis (GEPIA) database, Human Protein Atlas database, and LOGpc database. We conducted a variation analysis of datasets obtained from GEO and TCGA and performed a weighted gene coexpression network analysis (WGCNA) using the R programming language (3.6.3). Kaplan-Meier (KM) analysis was used to calculate the prognostic value of GRIN1. Finally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Using STRING, we constructed a protein–protein interaction (PPI) network. Cytoscape software, a prerequisite of visualizing core genes, was installed, and CytoHubba detected the 10 most tumor-related core genes. We identified 185 differentially expressed genes (DEGs). GO and KEGG enrichment analyses illustrated that the identified DEGs are imperative in different biological functions and ascertained the potential pathways in which the DEGs may be enriched. The overall survival calculated by KM analysis showed that patients with lower expression of GRIN1 had worse prognoses than patients with higher expression of GRIN1 (p=0.004). The GEPIA and LOGpc databases were used to verify the expression difference of GRIN1 among GBM, LGG, and normal brain tissues. Ultimately, immunohistochemical assay results showed that GRIN1 was detected in normal tissue and not in the tumor specimens. Our results highlight a potential target for glioma treatment and will further our understanding of the molecular mechanisms underlying the treatment of glioma.
format article
author Aoran Yang
Xinhuan Wang
Yaofeng Hu
Chao Shang
Yang Hong
author_facet Aoran Yang
Xinhuan Wang
Yaofeng Hu
Chao Shang
Yang Hong
author_sort Aoran Yang
title Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis
title_short Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis
title_full Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis
title_fullStr Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis
title_full_unstemmed Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis
title_sort identification of hub gene grin1 correlated with histological grade and prognosis of glioma by weighted gene coexpression network analysis
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/ae7d91ba5e6346e88da972590805c716
work_keys_str_mv AT aoranyang identificationofhubgenegrin1correlatedwithhistologicalgradeandprognosisofgliomabyweightedgenecoexpressionnetworkanalysis
AT xinhuanwang identificationofhubgenegrin1correlatedwithhistologicalgradeandprognosisofgliomabyweightedgenecoexpressionnetworkanalysis
AT yaofenghu identificationofhubgenegrin1correlatedwithhistologicalgradeandprognosisofgliomabyweightedgenecoexpressionnetworkanalysis
AT chaoshang identificationofhubgenegrin1correlatedwithhistologicalgradeandprognosisofgliomabyweightedgenecoexpressionnetworkanalysis
AT yanghong identificationofhubgenegrin1correlatedwithhistologicalgradeandprognosisofgliomabyweightedgenecoexpressionnetworkanalysis
_version_ 1718407791245262848