Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator

In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hijaz Ahmad, Muhammad Tariq, Soubhagya Kumar Sahoo, Sameh Askar, Ahmed E. Abouelregal, Khaled Mohamed Khedher
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ae822c9f8f044b7dac2de6d769d34e54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inline-formula>)-fractional integral operator. Next, employing this equality, we present some novel generalization of Ostrowski type inequality using the Hölder inequality, the power-mean inequality, Young’s inequality, and the Jensen integral inequality for the convexity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="sans-serif">Υ</mi><mo>|</mo></mrow></semantics></math></inline-formula>. We also deduced some new special cases from the main results. There exists a solid connection between fractional operators and convexity because of their fascinating properties in the mathematical sciences. Scientific inequalities of this nature and, particularly, the methods included have applications in different fields in which symmetry plays a notable role. It is assumed that the results presented in this article will show new directions in the field of fractional calculus.