Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inl...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae822c9f8f044b7dac2de6d769d34e54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ae822c9f8f044b7dac2de6d769d34e54 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ae822c9f8f044b7dac2de6d769d34e542021-11-25T19:06:24ZRefinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator10.3390/sym131120592073-8994https://doaj.org/article/ae822c9f8f044b7dac2de6d769d34e542021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2059https://doaj.org/toc/2073-8994In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inline-formula>)-fractional integral operator. Next, employing this equality, we present some novel generalization of Ostrowski type inequality using the Hölder inequality, the power-mean inequality, Young’s inequality, and the Jensen integral inequality for the convexity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="sans-serif">Υ</mi><mo>|</mo></mrow></semantics></math></inline-formula>. We also deduced some new special cases from the main results. There exists a solid connection between fractional operators and convexity because of their fascinating properties in the mathematical sciences. Scientific inequalities of this nature and, particularly, the methods included have applications in different fields in which symmetry plays a notable role. It is assumed that the results presented in this article will show new directions in the field of fractional calculus.Hijaz AhmadMuhammad TariqSoubhagya Kumar SahooSameh AskarAhmed E. AbouelregalKhaled Mohamed KhedherMDPI AGarticleOstrowski inequalityHölder inequalitypower mean inequalityYoung’s inequalityAtangana–Baleanu fractional integral operatorconvex functionMathematicsQA1-939ENSymmetry, Vol 13, Iss 2059, p 2059 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ostrowski inequality Hölder inequality power mean inequality Young’s inequality Atangana–Baleanu fractional integral operator convex function Mathematics QA1-939 |
spellingShingle |
Ostrowski inequality Hölder inequality power mean inequality Young’s inequality Atangana–Baleanu fractional integral operator convex function Mathematics QA1-939 Hijaz Ahmad Muhammad Tariq Soubhagya Kumar Sahoo Sameh Askar Ahmed E. Abouelregal Khaled Mohamed Khedher Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator |
description |
In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inline-formula>)-fractional integral operator. Next, employing this equality, we present some novel generalization of Ostrowski type inequality using the Hölder inequality, the power-mean inequality, Young’s inequality, and the Jensen integral inequality for the convexity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="sans-serif">Υ</mi><mo>|</mo></mrow></semantics></math></inline-formula>. We also deduced some new special cases from the main results. There exists a solid connection between fractional operators and convexity because of their fascinating properties in the mathematical sciences. Scientific inequalities of this nature and, particularly, the methods included have applications in different fields in which symmetry plays a notable role. It is assumed that the results presented in this article will show new directions in the field of fractional calculus. |
format |
article |
author |
Hijaz Ahmad Muhammad Tariq Soubhagya Kumar Sahoo Sameh Askar Ahmed E. Abouelregal Khaled Mohamed Khedher |
author_facet |
Hijaz Ahmad Muhammad Tariq Soubhagya Kumar Sahoo Sameh Askar Ahmed E. Abouelregal Khaled Mohamed Khedher |
author_sort |
Hijaz Ahmad |
title |
Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator |
title_short |
Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator |
title_full |
Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator |
title_fullStr |
Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator |
title_full_unstemmed |
Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator |
title_sort |
refinements of ostrowski type integral inequalities involving atangana–baleanu fractional integral operator |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/ae822c9f8f044b7dac2de6d769d34e54 |
work_keys_str_mv |
AT hijazahmad refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator AT muhammadtariq refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator AT soubhagyakumarsahoo refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator AT samehaskar refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator AT ahmedeabouelregal refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator AT khaledmohamedkhedher refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator |
_version_ |
1718410299586904064 |