Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator

In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hijaz Ahmad, Muhammad Tariq, Soubhagya Kumar Sahoo, Sameh Askar, Ahmed E. Abouelregal, Khaled Mohamed Khedher
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ae822c9f8f044b7dac2de6d769d34e54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ae822c9f8f044b7dac2de6d769d34e54
record_format dspace
spelling oai:doaj.org-article:ae822c9f8f044b7dac2de6d769d34e542021-11-25T19:06:24ZRefinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator10.3390/sym131120592073-8994https://doaj.org/article/ae822c9f8f044b7dac2de6d769d34e542021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2059https://doaj.org/toc/2073-8994In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inline-formula>)-fractional integral operator. Next, employing this equality, we present some novel generalization of Ostrowski type inequality using the Hölder inequality, the power-mean inequality, Young’s inequality, and the Jensen integral inequality for the convexity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="sans-serif">Υ</mi><mo>|</mo></mrow></semantics></math></inline-formula>. We also deduced some new special cases from the main results. There exists a solid connection between fractional operators and convexity because of their fascinating properties in the mathematical sciences. Scientific inequalities of this nature and, particularly, the methods included have applications in different fields in which symmetry plays a notable role. It is assumed that the results presented in this article will show new directions in the field of fractional calculus.Hijaz AhmadMuhammad TariqSoubhagya Kumar SahooSameh AskarAhmed E. AbouelregalKhaled Mohamed KhedherMDPI AGarticleOstrowski inequalityHölder inequalitypower mean inequalityYoung’s inequalityAtangana–Baleanu fractional integral operatorconvex functionMathematicsQA1-939ENSymmetry, Vol 13, Iss 2059, p 2059 (2021)
institution DOAJ
collection DOAJ
language EN
topic Ostrowski inequality
Hölder inequality
power mean inequality
Young’s inequality
Atangana–Baleanu fractional integral operator
convex function
Mathematics
QA1-939
spellingShingle Ostrowski inequality
Hölder inequality
power mean inequality
Young’s inequality
Atangana–Baleanu fractional integral operator
convex function
Mathematics
QA1-939
Hijaz Ahmad
Muhammad Tariq
Soubhagya Kumar Sahoo
Sameh Askar
Ahmed E. Abouelregal
Khaled Mohamed Khedher
Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
description In this article, first, we deduce an equality involving the Atangana–Baleanu (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">AB</mi></semantics></math></inline-formula>)-fractional integral operator. Next, employing this equality, we present some novel generalization of Ostrowski type inequality using the Hölder inequality, the power-mean inequality, Young’s inequality, and the Jensen integral inequality for the convexity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="sans-serif">Υ</mi><mo>|</mo></mrow></semantics></math></inline-formula>. We also deduced some new special cases from the main results. There exists a solid connection between fractional operators and convexity because of their fascinating properties in the mathematical sciences. Scientific inequalities of this nature and, particularly, the methods included have applications in different fields in which symmetry plays a notable role. It is assumed that the results presented in this article will show new directions in the field of fractional calculus.
format article
author Hijaz Ahmad
Muhammad Tariq
Soubhagya Kumar Sahoo
Sameh Askar
Ahmed E. Abouelregal
Khaled Mohamed Khedher
author_facet Hijaz Ahmad
Muhammad Tariq
Soubhagya Kumar Sahoo
Sameh Askar
Ahmed E. Abouelregal
Khaled Mohamed Khedher
author_sort Hijaz Ahmad
title Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
title_short Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
title_full Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
title_fullStr Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
title_full_unstemmed Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
title_sort refinements of ostrowski type integral inequalities involving atangana–baleanu fractional integral operator
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/ae822c9f8f044b7dac2de6d769d34e54
work_keys_str_mv AT hijazahmad refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator
AT muhammadtariq refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator
AT soubhagyakumarsahoo refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator
AT samehaskar refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator
AT ahmedeabouelregal refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator
AT khaledmohamedkhedher refinementsofostrowskitypeintegralinequalitiesinvolvingatanganabaleanufractionalintegraloperator
_version_ 1718410299586904064