Unmasking Clever Hans predictors and assessing what machines really learn

Nonlinear machine learning methods have good predictive ability but the lack of transparency of the algorithms can limit their use. Here the authors investigate how these methods approach learning in order to assess the dependability of their decision making.

Guardado en:
Detalles Bibliográficos
Autores principales: Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ae85cf785d3645e68f9b5bfe27287566
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Nonlinear machine learning methods have good predictive ability but the lack of transparency of the algorithms can limit their use. Here the authors investigate how these methods approach learning in order to assess the dependability of their decision making.