Unmasking Clever Hans predictors and assessing what machines really learn
Nonlinear machine learning methods have good predictive ability but the lack of transparency of the algorithms can limit their use. Here the authors investigate how these methods approach learning in order to assess the dependability of their decision making.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae85cf785d3645e68f9b5bfe27287566 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ae85cf785d3645e68f9b5bfe27287566 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ae85cf785d3645e68f9b5bfe272875662021-12-02T16:57:35ZUnmasking Clever Hans predictors and assessing what machines really learn10.1038/s41467-019-08987-42041-1723https://doaj.org/article/ae85cf785d3645e68f9b5bfe272875662019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-08987-4https://doaj.org/toc/2041-1723Nonlinear machine learning methods have good predictive ability but the lack of transparency of the algorithms can limit their use. Here the authors investigate how these methods approach learning in order to assess the dependability of their decision making.Sebastian LapuschkinStephan WäldchenAlexander BinderGrégoire MontavonWojciech SamekKlaus-Robert MüllerNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-8 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sebastian Lapuschkin Stephan Wäldchen Alexander Binder Grégoire Montavon Wojciech Samek Klaus-Robert Müller Unmasking Clever Hans predictors and assessing what machines really learn |
description |
Nonlinear machine learning methods have good predictive ability but the lack of transparency of the algorithms can limit their use. Here the authors investigate how these methods approach learning in order to assess the dependability of their decision making. |
format |
article |
author |
Sebastian Lapuschkin Stephan Wäldchen Alexander Binder Grégoire Montavon Wojciech Samek Klaus-Robert Müller |
author_facet |
Sebastian Lapuschkin Stephan Wäldchen Alexander Binder Grégoire Montavon Wojciech Samek Klaus-Robert Müller |
author_sort |
Sebastian Lapuschkin |
title |
Unmasking Clever Hans predictors and assessing what machines really learn |
title_short |
Unmasking Clever Hans predictors and assessing what machines really learn |
title_full |
Unmasking Clever Hans predictors and assessing what machines really learn |
title_fullStr |
Unmasking Clever Hans predictors and assessing what machines really learn |
title_full_unstemmed |
Unmasking Clever Hans predictors and assessing what machines really learn |
title_sort |
unmasking clever hans predictors and assessing what machines really learn |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ae85cf785d3645e68f9b5bfe27287566 |
work_keys_str_mv |
AT sebastianlapuschkin unmaskingcleverhanspredictorsandassessingwhatmachinesreallylearn AT stephanwaldchen unmaskingcleverhanspredictorsandassessingwhatmachinesreallylearn AT alexanderbinder unmaskingcleverhanspredictorsandassessingwhatmachinesreallylearn AT gregoiremontavon unmaskingcleverhanspredictorsandassessingwhatmachinesreallylearn AT wojciechsamek unmaskingcleverhanspredictorsandassessingwhatmachinesreallylearn AT klausrobertmuller unmaskingcleverhanspredictorsandassessingwhatmachinesreallylearn |
_version_ |
1718382522294861824 |