Unmasking Clever Hans predictors and assessing what machines really learn
Nonlinear machine learning methods have good predictive ability but the lack of transparency of the algorithms can limit their use. Here the authors investigate how these methods approach learning in order to assess the dependability of their decision making.
Guardado en:
Autores principales: | Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae85cf785d3645e68f9b5bfe27287566 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tell me what you want, what you really, really want
por: Paul Rice, et al.
Publicado: (2016) -
CLEVER INTERACTIONS: A VERY NEAR HORIZON OF CHEMISTRY
por: González M.,Guillermo
Publicado: (2002) -
Learning curve or experience-related outcome: what really matters in paediatric laparoscopic pyeloplasty
por: Wojciech Panek, et al.
Publicado: (2019) -
Legends of Students’ "Clever Answers": Criticism or Affirmation of the Educational System?
por: Jana Baćević
Publicado: (2016) -
Labour market flexibility: what does it really mean?
por: Lagos Weber, Ricardo A.
Publicado: (2014)