Comparisons of numerical phenology models and machine learning methods on predicting the spring onset of natural vegetation across the Northern Hemisphere
The timing of vegetation spring onset is largely influenced by climate factors, making it sensitive to climate variation. Robust models that predict vegetation spring onset via the climate forcing data are needed in the land surface models for understanding the impacts of climate change on vegetatio...
Guardado en:
Autores principales: | Wanjing Li, Qinchuan Xin, Xuewen Zhou, Zhicheng Zhang, Yongjian Ruan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae90e7ff52654b1ead29ab1c09b4d372 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assessing the inter-annual variability of vegetation phenological events observed from satellite vegetation index time series in dryland sites
por: Anna Kato, et al.
Publicado: (2021) -
Remote sensing phenology of two Chinese northern Sphagnum bogs under climate drivers during 2001 and 2018
por: Yuwen Pang, et al.
Publicado: (2021) -
Responses of vegetation spring phenology to climatic factors in Xinjiang, China
por: Cheng Li, et al.
Publicado: (2021) -
Specific Drivers and Responses to Land Surface Phenology of Different Vegetation Types in the Qinling Mountains, Central China
por: Jiaqi Guo, et al.
Publicado: (2021) -
Interactions Between Environment and Genetic Diversity in Perennial Grass Phenology: A Review of Processes at Plant Scale and Modeling
por: Simon Rouet, et al.
Publicado: (2021)