Chaos as an intermittently forced linear system
The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.
Enregistré dans:
Auteurs principaux: | Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, Eurika Kaiser, J. Nathan Kutz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ae9e7d04e6aa4c9f8cd998dd33b77dcc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep learning for universal linear embeddings of nonlinear dynamics
par: Bethany Lusch, et autres
Publié: (2018) -
Learning dominant physical processes with data-driven balance models
par: Jared L. Callaham, et autres
Publié: (2021) -
DeepGreen: deep learning of Green’s functions for nonlinear boundary value problems
par: Craig R. Gin, et autres
Publié: (2021) -
Imaging the Transport Dynamics of Single Alphaherpesvirus Particles in Intact Peripheral Nervous System Explants from Infected Mice
par: Andrea E. Granstedt, et autres
Publié: (2013) -
Wing structure and neural encoding jointly determine sensing strategies in insect flight.
par: Alison I Weber, et autres
Publié: (2021)