Chaos as an intermittently forced linear system
The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.
Guardado en:
Autores principales: | Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, Eurika Kaiser, J. Nathan Kutz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ae9e7d04e6aa4c9f8cd998dd33b77dcc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning for universal linear embeddings of nonlinear dynamics
por: Bethany Lusch, et al.
Publicado: (2018) -
Learning dominant physical processes with data-driven balance models
por: Jared L. Callaham, et al.
Publicado: (2021) -
DeepGreen: deep learning of Green’s functions for nonlinear boundary value problems
por: Craig R. Gin, et al.
Publicado: (2021) -
Imaging the Transport Dynamics of Single Alphaherpesvirus Particles in Intact Peripheral Nervous System Explants from Infected Mice
por: Andrea E. Granstedt, et al.
Publicado: (2013) -
Wing structure and neural encoding jointly determine sensing strategies in insect flight.
por: Alison I Weber, et al.
Publicado: (2021)