Alternative negative weight for simpler hardware implementation of synapse device based neuromorphic system
Abstract Lately, there has been a rapid increase in the use of software-based deep learning neural networks (S-DNN) for the analysis of unstructured data consumption. For implementation of the S-DNN, synapse-device-based hardware DNN (H-DNN) has been proposed as an alternative to typical Von-Neumann...
Guardado en:
Autores principales: | Geonhui Han, Chuljun Lee, Jae-Eun Lee, Jongseon Seo, Myungjun Kim, Yubin Song, Young-Ho Seo, Daeseok Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aec75e692f634a0a90acfdf00a3e5311 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Multi-Terminal Memristive Devices Enabling Tunable Synaptic Plasticity in Neuromorphic Hardware: A Mini-Review
por: Yann Beilliard, et al.
Publicado: (2021) -
Challenges hindering memristive neuromorphic hardware from going mainstream
por: Gina C. Adam, et al.
Publicado: (2018) -
A robust model of Stimulus-Specific Adaptation validated on neuromorphic hardware
por: Natacha Vanattou-Saïfoudine, et al.
Publicado: (2021) -
Graphene memristive synapses for high precision neuromorphic computing
por: Thomas F. Schranghamer, et al.
Publicado: (2020)