Machine learning differentiates enzymatic and non-enzymatic metals in proteins

The authors generate the largest structural dataset of enzymatic and non-enzymatic metalloprotein sites to date. They use this dataset to train a decision-tree ensemble machine learning algorithm that allows them to distinguish between catalytic and non-catalytic metal sites. The computational model...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ryan Feehan, Meghan W. Franklin, Joanna S. G. Slusky
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/aecd91b4c8984f009faa432576d01db6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The authors generate the largest structural dataset of enzymatic and non-enzymatic metalloprotein sites to date. They use this dataset to train a decision-tree ensemble machine learning algorithm that allows them to distinguish between catalytic and non-catalytic metal sites. The computational model described here could also be useful for the identification of new enzymatic mechanisms and de novo enzyme design.