Deep learning classification of lung cancer histology using CT images
Abstract Tumor histology is an important predictor of therapeutic response and outcomes in lung cancer. Tissue sampling for pathologist review is the most reliable method for histology classification, however, recent advances in deep learning for medical image analysis allude to the utility of radio...
Guardado en:
Autores principales: | Tafadzwa L. Chaunzwa, Ahmed Hosny, Yiwen Xu, Andrea Shafer, Nancy Diao, Michael Lanuti, David C. Christiani, Raymond H. Mak, Hugo J. W. L. Aerts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aee30c44ddfb434390b4c517b7926517 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
por: Edward H. Lee, et al.
Publicado: (2021) -
Comparison of micro-CT imaging and histology for approximal caries detection
por: C. Boca, et al.
Publicado: (2017) -
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
por: Javad Noorbakhsh, et al.
Publicado: (2020) -
Author Correction: A pyramidal deep learning pipeline for kidney whole-slide histology images classification
por: Hisham Abdeltawab, et al.
Publicado: (2021) -
Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
por: Ji Young Lee, et al.
Publicado: (2020)