Oscillations in deep-open-cells during winter Mediterranean cyclones
Abstract Open cloud cells can be described in ideal form as connected clouds that surround spots of isolated clear skies in their centers. This cloud pattern is typically associated with marine stratocumulus (MSc) that form in the oceanic boundary layer. However, it can form in deeper convective clo...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aee649c5fb31486ba75087aa1c1c5c6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:aee649c5fb31486ba75087aa1c1c5c6e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:aee649c5fb31486ba75087aa1c1c5c6e2021-12-02T15:52:37ZOscillations in deep-open-cells during winter Mediterranean cyclones10.1038/s41612-021-00168-92397-3722https://doaj.org/article/aee649c5fb31486ba75087aa1c1c5c6e2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41612-021-00168-9https://doaj.org/toc/2397-3722Abstract Open cloud cells can be described in ideal form as connected clouds that surround spots of isolated clear skies in their centers. This cloud pattern is typically associated with marine stratocumulus (MSc) that form in the oceanic boundary layer. However, it can form in deeper convective clouds as well. Here, we focus on deep-open-cells (with tops reaching up to ~5–7 km) that form in the post-frontal regions of winter Mediterranean cyclones, and examine their properties and evolution. Using a Lagrangian analysis of satellite data, we show that deep-open-cells have a larger equivalent diameter (~58 ± 18 km) and oscillate with a longer periodicity (~3.5 ± 1 h) compared to shallow MSc. A numerical simulation of one Cyprus low event reveals that precipitation-generated convergence and divergence dynamic patterns are the main driver of the open cells’ organization and oscillations. Thus, our findings generalize the mechanism attributed to the behavior of shallow marine cells to deeper convective systems.Huan LiuIlan KorenOrit AltaratzReuven H. HeiblumPavel KhainXiaoran OuyangJianping GuoNature PortfolioarticleEnvironmental sciencesGE1-350Meteorology. ClimatologyQC851-999ENnpj Climate and Atmospheric Science, Vol 4, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Environmental sciences GE1-350 Meteorology. Climatology QC851-999 |
spellingShingle |
Environmental sciences GE1-350 Meteorology. Climatology QC851-999 Huan Liu Ilan Koren Orit Altaratz Reuven H. Heiblum Pavel Khain Xiaoran Ouyang Jianping Guo Oscillations in deep-open-cells during winter Mediterranean cyclones |
description |
Abstract Open cloud cells can be described in ideal form as connected clouds that surround spots of isolated clear skies in their centers. This cloud pattern is typically associated with marine stratocumulus (MSc) that form in the oceanic boundary layer. However, it can form in deeper convective clouds as well. Here, we focus on deep-open-cells (with tops reaching up to ~5–7 km) that form in the post-frontal regions of winter Mediterranean cyclones, and examine their properties and evolution. Using a Lagrangian analysis of satellite data, we show that deep-open-cells have a larger equivalent diameter (~58 ± 18 km) and oscillate with a longer periodicity (~3.5 ± 1 h) compared to shallow MSc. A numerical simulation of one Cyprus low event reveals that precipitation-generated convergence and divergence dynamic patterns are the main driver of the open cells’ organization and oscillations. Thus, our findings generalize the mechanism attributed to the behavior of shallow marine cells to deeper convective systems. |
format |
article |
author |
Huan Liu Ilan Koren Orit Altaratz Reuven H. Heiblum Pavel Khain Xiaoran Ouyang Jianping Guo |
author_facet |
Huan Liu Ilan Koren Orit Altaratz Reuven H. Heiblum Pavel Khain Xiaoran Ouyang Jianping Guo |
author_sort |
Huan Liu |
title |
Oscillations in deep-open-cells during winter Mediterranean cyclones |
title_short |
Oscillations in deep-open-cells during winter Mediterranean cyclones |
title_full |
Oscillations in deep-open-cells during winter Mediterranean cyclones |
title_fullStr |
Oscillations in deep-open-cells during winter Mediterranean cyclones |
title_full_unstemmed |
Oscillations in deep-open-cells during winter Mediterranean cyclones |
title_sort |
oscillations in deep-open-cells during winter mediterranean cyclones |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/aee649c5fb31486ba75087aa1c1c5c6e |
work_keys_str_mv |
AT huanliu oscillationsindeepopencellsduringwintermediterraneancyclones AT ilankoren oscillationsindeepopencellsduringwintermediterraneancyclones AT oritaltaratz oscillationsindeepopencellsduringwintermediterraneancyclones AT reuvenhheiblum oscillationsindeepopencellsduringwintermediterraneancyclones AT pavelkhain oscillationsindeepopencellsduringwintermediterraneancyclones AT xiaoranouyang oscillationsindeepopencellsduringwintermediterraneancyclones AT jianpingguo oscillationsindeepopencellsduringwintermediterraneancyclones |
_version_ |
1718385591313235968 |