Variability in higher order structure of noise added to weighted networks

A common problem in reconstructing weighted networks to represent real-world systems is that low-weight edges might appear due to noise, affecting the topology of the inferred network. Here, the authors propose a method based on persistent homology that allows one to investigate the higher-order net...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ann S. Blevins, Jason Z. Kim, Dani S. Bassett
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/aee7cd2648e549649747b3a17be0d7aa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:aee7cd2648e549649747b3a17be0d7aa
record_format dspace
spelling oai:doaj.org-article:aee7cd2648e549649747b3a17be0d7aa2021-11-08T10:58:03ZVariability in higher order structure of noise added to weighted networks10.1038/s42005-021-00725-x2399-3650https://doaj.org/article/aee7cd2648e549649747b3a17be0d7aa2021-11-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00725-xhttps://doaj.org/toc/2399-3650A common problem in reconstructing weighted networks to represent real-world systems is that low-weight edges might appear due to noise, affecting the topology of the inferred network. Here, the authors propose a method based on persistent homology that allows one to investigate the higher-order network organization that can be created by low-weight, noisy edges.Ann S. BlevinsJason Z. KimDani S. BassettNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Ann S. Blevins
Jason Z. Kim
Dani S. Bassett
Variability in higher order structure of noise added to weighted networks
description A common problem in reconstructing weighted networks to represent real-world systems is that low-weight edges might appear due to noise, affecting the topology of the inferred network. Here, the authors propose a method based on persistent homology that allows one to investigate the higher-order network organization that can be created by low-weight, noisy edges.
format article
author Ann S. Blevins
Jason Z. Kim
Dani S. Bassett
author_facet Ann S. Blevins
Jason Z. Kim
Dani S. Bassett
author_sort Ann S. Blevins
title Variability in higher order structure of noise added to weighted networks
title_short Variability in higher order structure of noise added to weighted networks
title_full Variability in higher order structure of noise added to weighted networks
title_fullStr Variability in higher order structure of noise added to weighted networks
title_full_unstemmed Variability in higher order structure of noise added to weighted networks
title_sort variability in higher order structure of noise added to weighted networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/aee7cd2648e549649747b3a17be0d7aa
work_keys_str_mv AT annsblevins variabilityinhigherorderstructureofnoiseaddedtoweightednetworks
AT jasonzkim variabilityinhigherorderstructureofnoiseaddedtoweightednetworks
AT danisbassett variabilityinhigherorderstructureofnoiseaddedtoweightednetworks
_version_ 1718442459005976576