Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system
Abstract In this paper, we experimentally validate a tiled-aperture conformal projection system with the largest array filling factor and element beam truncation factor to the best of our knowledge. The conformal projection system, which is made up of a hexagonal adaptive fiber-optics collimator (AF...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aef1344857c04214962d3197254929fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:aef1344857c04214962d3197254929fe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:aef1344857c04214962d3197254929fe2021-12-02T11:52:17ZRealization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system10.1038/s41598-017-02118-z2045-2322https://doaj.org/article/aef1344857c04214962d3197254929fe2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02118-zhttps://doaj.org/toc/2045-2322Abstract In this paper, we experimentally validate a tiled-aperture conformal projection system with the largest array filling factor and element beam truncation factor to the best of our knowledge. The conformal projection system, which is made up of a hexagonal adaptive fiber-optics collimator (AFOC) array with the proximate ideal intensity distributions, is fabricated and the performance of output beam is tested and evaluated properly and carefully. Both of the active phase-locking control and precise tip-tilt control are implemented successfully in the CBC of the hexagonal seven-beam-array. Experimental results show a large energy proportion (47%, which increases by over 10% comparing with the previously demonstrated largest value) in the central lobe is achieved and the residual phase error is lower than λ/27. When the AFOC array performs, the precise tilt control makes the combining beams overlap well and the average normalized metric value is improved from 0.336 without control to 0.947 with both of active piston and tip-tilt phase controls while the fringe contrast increases from 19% to more than 91% correspondingly. This work presents a promising structure for the achievement of large energy proportion in the central lobe in high power fiber laser CBC systems.Dong ZhiZhixin ZhangYanxing MaXiaolin WangZilun ChenWuming WuPu ZhouLei SiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dong Zhi Zhixin Zhang Yanxing Ma Xiaolin Wang Zilun Chen Wuming Wu Pu Zhou Lei Si Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system |
description |
Abstract In this paper, we experimentally validate a tiled-aperture conformal projection system with the largest array filling factor and element beam truncation factor to the best of our knowledge. The conformal projection system, which is made up of a hexagonal adaptive fiber-optics collimator (AFOC) array with the proximate ideal intensity distributions, is fabricated and the performance of output beam is tested and evaluated properly and carefully. Both of the active phase-locking control and precise tip-tilt control are implemented successfully in the CBC of the hexagonal seven-beam-array. Experimental results show a large energy proportion (47%, which increases by over 10% comparing with the previously demonstrated largest value) in the central lobe is achieved and the residual phase error is lower than λ/27. When the AFOC array performs, the precise tilt control makes the combining beams overlap well and the average normalized metric value is improved from 0.336 without control to 0.947 with both of active piston and tip-tilt phase controls while the fringe contrast increases from 19% to more than 91% correspondingly. This work presents a promising structure for the achievement of large energy proportion in the central lobe in high power fiber laser CBC systems. |
format |
article |
author |
Dong Zhi Zhixin Zhang Yanxing Ma Xiaolin Wang Zilun Chen Wuming Wu Pu Zhou Lei Si |
author_facet |
Dong Zhi Zhixin Zhang Yanxing Ma Xiaolin Wang Zilun Chen Wuming Wu Pu Zhou Lei Si |
author_sort |
Dong Zhi |
title |
Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system |
title_short |
Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system |
title_full |
Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system |
title_fullStr |
Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system |
title_full_unstemmed |
Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system |
title_sort |
realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/aef1344857c04214962d3197254929fe |
work_keys_str_mv |
AT dongzhi realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem AT zhixinzhang realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem AT yanxingma realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem AT xiaolinwang realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem AT zilunchen realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem AT wumingwu realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem AT puzhou realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem AT leisi realizationoflargeenergyproportioninthecentrallobebycoherentbeamcombinationbasedonconformalprojectionsystem |
_version_ |
1718395125438087168 |