Rapid identification of wood species using XRF and neural network machine learning
Abstract An innovative approach for the rapid identification of wood species is presented. By combining X-ray fluorescence spectrometry with convolutional neural network machine learning, 48 different wood specimens were clearly differentiated and identified with a 99% accuracy. Wood species identif...
Guardado en:
Autores principales: | Aaron N. Shugar, B. Lee Drake, Greg Kelley |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aef542a3a8534e4ba65b56f076949600 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of a rapid field testing method for metals in horizontal directional drilling residuals with XRF sensor
por: Hailin Zhang, et al.
Publicado: (2021) -
Identification of cinnabar existing in different objects using portable coupled XRF-XRD, laboratory-type XRD and micro-Raman spectroscopy: comparison of the techniques
por: Jingyi Shen, et al.
Publicado: (2021) -
XRF elemental analysis of inks in South American manuscripts from 1779 to 1825
por: Celina Luízar Obregón, et al.
Publicado: (2021) -
Using artificial neural networks in estimating wood resistance
por: Miguel,Eder Pereira, et al.
Publicado: (2018) -
Soil and Plant Nutrient Analysis with a Portable XRF Probe Using a Single Calibration
por: João Antonangelo, et al.
Publicado: (2021)