A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
Network-based data integration for drug–target prediction is a promising avenue for drug repositioning, but performance is wanting. Here, the authors introduce DTINet, whose performance is enhanced in the face of noisy, incomplete and high-dimensional biological data by learning low-dimensional vect...
Guardado en:
Autores principales: | Yunan Luo, Xinbin Zhao, Jingtian Zhou, Jinglin Yang, Yanqing Zhang, Wenhua Kuang, Jian Peng, Ligong Chen, Jianyang Zeng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af0ec87cc2674025b7de4031ef5792be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of drug-target interactions and drug repositioning via network-based inference.
por: Feixiong Cheng, et al.
Publicado: (2012) -
Enriching limited information on rare diseases from heterogeneous networks for drug repositioning
por: Hongkui Cao, et al.
Publicado: (2021) -
Drug Repositioning For Allosteric Modulation of VIP and PACAP Receptors
por: Ingrid Langer, et al.
Publicado: (2021) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Xiujin Wu, et al.
Publicado: (2021) -
Evaluation of connectivity map shows limited reproducibility in drug repositioning
por: Nathaniel Lim, et al.
Publicado: (2021)