Experimental semi-autonomous eigensolver using reinforcement learning
Abstract The characterization of observables, expressed via Hermitian operators, is a crucial task in quantum mechanics. For this reason, an eigensolver is a fundamental algorithm for any quantum technology. In this work, we implement a semi-autonomous algorithm to obtain an approximation of the eig...
Guardado en:
Autores principales: | C.-Y. Pan, M. Hao, N. Barraza, E. Solano, F. Albarrán-Arriagada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af1127bdbeb84e349f4405ed5694d843 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quadrotor Autonomous Navigation in Semi-Known Environments Based on Deep Reinforcement Learning
por: Jiajun Ou, et al.
Publicado: (2021) -
Deep Reinforcement Learning for Autonomous Water Heater Control
por: Kadir Amasyali, et al.
Publicado: (2021) -
A fast learning approach for autonomous navigation using a deep reinforcement learning method
por: Muhammad Mudassir Ejaz, et al.
Publicado: (2021) -
Quantum Circuit Architecture Optimization for Variational Quantum Eigensolver via Monto Carlo Tree Search
por: Fan-Xu Meng, et al.
Publicado: (2021) -
Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors
por: Woosung Jeon, et al.
Publicado: (2020)