Meta-Optimization of Bias-Variance Trade-Off in Stochastic Model Learning
Model-based reinforcement learning is expected to be a method that can safely acquire the optimal policy under real-world conditions by using a stochastic dynamics model for planning. Since the stochastic dynamics model of the real world is generally unknown, a method for learning from state transit...
Guardado en:
Autores principales: | Takumi Aotani, Taisuke Kobayashi, Kenji Sugimoto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af14030d799748c8865f08da2aa6ba56 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reliability-based multiobjective optimization using the satisficing trade-off method
por: Nozomu KOGISO, et al.
Publicado: (2014) -
Time-Cost-Quality trade off in Critical Chain Method with multi mode activities by Multi Objective Particle Swarm Optimization
por: Mohammad Javad Taheri Amiri, et al.
Publicado: (2019) -
Predicting length of stay in hospitals intensive care unit using general admission features
por: Merhan A. Abd-Elrazek, et al.
Publicado: (2021) -
PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
por: T.B. Nikitina
Publicado: (2017) -
Using Shapley Values and Genetic Algorithms to Solve Multiobjective Optimization Problems
por: Hsien-Chung Wu
Publicado: (2021)