Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements
Abstract Compared to the abilities of the animal brain, many Artificial Intelligence systems have limitations which emphasise the need for a Brain-Inspired Artificial Intelligence paradigm. This paper proposes a novel Brain-Inspired Spiking Neural Network (BI-SNN) model for incremental learning of s...
Guardado en:
Autores principales: | Kaushalya Kumarasinghe, Nikola Kasabov, Denise Taylor |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af1659f8030f4cc8bbb59d3d389d1c40 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Exploring electroencephalography with a model inspired by quantum mechanics
por: Nicholas J. M. Popiel, et al.
Publicado: (2021) -
Decoding individual finger movements from one hand using human EEG signals.
por: Ke Liao, et al.
Publicado: (2014) -
Test of understanding graphs in kinematics: Item objectives confirmed by clustering eye movement transitions
por: P. Klein, et al.
Publicado: (2021) -
Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
por: Samaneh Alsadat Saeedinia, et al.
Publicado: (2021) -
Editorial: Dry Electroencephalography for Brain Monitoring in Sports and Movement Science
por: Silvia Comani, et al.
Publicado: (2021)