Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements
Abstract Compared to the abilities of the animal brain, many Artificial Intelligence systems have limitations which emphasise the need for a Brain-Inspired Artificial Intelligence paradigm. This paper proposes a novel Brain-Inspired Spiking Neural Network (BI-SNN) model for incremental learning of s...
Enregistré dans:
Auteurs principaux: | Kaushalya Kumarasinghe, Nikola Kasabov, Denise Taylor |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/af1659f8030f4cc8bbb59d3d389d1c40 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Exploring electroencephalography with a model inspired by quantum mechanics
par: Nicholas J. M. Popiel, et autres
Publié: (2021) -
Decoding individual finger movements from one hand using human EEG signals.
par: Ke Liao, et autres
Publié: (2014) -
Test of understanding graphs in kinematics: Item objectives confirmed by clustering eye movement transitions
par: P. Klein, et autres
Publié: (2021) -
Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
par: Samaneh Alsadat Saeedinia, et autres
Publié: (2021) -
Editorial: Dry Electroencephalography for Brain Monitoring in Sports and Movement Science
par: Silvia Comani, et autres
Publié: (2021)