Analysis of the Damage Mechanism around the Crack Tip for Two Rubber-Toughened PLA-Based Blends
The toughening mechanisms of poly(lactic acid; PLA) blended with two different elastomers, namely poly (butylene adipate-co-terephtalate; PBAT) and polyolefin elastomers with grafted glycidyl methacrylate (POE-g-GMA), at 10 and 20 wt.%, were investigated. Tensile and Charpy impact tests showed a gen...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af1acd44f07f484388d04b090f3bb695 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The toughening mechanisms of poly(lactic acid; PLA) blended with two different elastomers, namely poly (butylene adipate-co-terephtalate; PBAT) and polyolefin elastomers with grafted glycidyl methacrylate (POE-g-GMA), at 10 and 20 wt.%, were investigated. Tensile and Charpy impact tests showed a general improvement in the performance of the PLA. The morphology of the dispersed phases showed that PBAT is in the form of spheres while POE-g-GMA has a dual sphere/fibre morphology. To correlate the micromechanical deformation mechanism with the macroscopical mechanical behaviour, the analysis of the subcritical crack tip damaged zone of double-notched specimens subjected to a four-point bending test (according to the single-edge double-notch four-point bend (SEDN-4PB) technique) was carried out using several microscopic techniques (SEM, polarized TOM and TEM). The damage was mainly generated by shear yielding deformation although voids associated with dilatational bands were observed. |
---|