Estimates for a function on almost Hermitian manifolds

We study some estimates for a real-valued smooth function φ on almost Hermitian manifolds. In the present paper, we show that ∂∂∂̄ φ and ∂̄∂∂̄ φ can be estimated by the gradient of the function φ.

Guardado en:
Detalles Bibliográficos
Autor principal: Kawamura Masaya
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/af27c1591109486eb143b03a8915e4b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:af27c1591109486eb143b03a8915e4b8
record_format dspace
spelling oai:doaj.org-article:af27c1591109486eb143b03a8915e4b82021-12-05T14:10:45ZEstimates for a function on almost Hermitian manifolds2300-744310.1515/coma-2020-0118https://doaj.org/article/af27c1591109486eb143b03a8915e4b82021-09-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0118https://doaj.org/toc/2300-7443We study some estimates for a real-valued smooth function φ on almost Hermitian manifolds. In the present paper, we show that ∂∂∂̄ φ and ∂̄∂∂̄ φ can be estimated by the gradient of the function φ.Kawamura MasayaDe Gruyterarticlealmost hermitian metricalmost complex manifoldchern connection32q60 (primary)53c1553c55 (secondary)MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 267-273 (2021)
institution DOAJ
collection DOAJ
language EN
topic almost hermitian metric
almost complex manifold
chern connection
32q60 (primary)
53c15
53c55 (secondary)
Mathematics
QA1-939
spellingShingle almost hermitian metric
almost complex manifold
chern connection
32q60 (primary)
53c15
53c55 (secondary)
Mathematics
QA1-939
Kawamura Masaya
Estimates for a function on almost Hermitian manifolds
description We study some estimates for a real-valued smooth function φ on almost Hermitian manifolds. In the present paper, we show that ∂∂∂̄ φ and ∂̄∂∂̄ φ can be estimated by the gradient of the function φ.
format article
author Kawamura Masaya
author_facet Kawamura Masaya
author_sort Kawamura Masaya
title Estimates for a function on almost Hermitian manifolds
title_short Estimates for a function on almost Hermitian manifolds
title_full Estimates for a function on almost Hermitian manifolds
title_fullStr Estimates for a function on almost Hermitian manifolds
title_full_unstemmed Estimates for a function on almost Hermitian manifolds
title_sort estimates for a function on almost hermitian manifolds
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/af27c1591109486eb143b03a8915e4b8
work_keys_str_mv AT kawamuramasaya estimatesforafunctiononalmosthermitianmanifolds
_version_ 1718371769167904768