Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics
Reactive oxygen species management is a practical strategy that can reduce the risk of chemotherapy-induced acute kidney injury, but at the cost of chemotherapeutic efficacy. Here the authors report catalytic activity tunable ceria nanoparticles as context-dependent reactive oxygen species scavenger...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af289d0ad96d4750a442dfb9b9269d7d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Reactive oxygen species management is a practical strategy that can reduce the risk of chemotherapy-induced acute kidney injury, but at the cost of chemotherapeutic efficacy. Here the authors report catalytic activity tunable ceria nanoparticles as context-dependent reactive oxygen species scavengers, which can prevent chemotherapy-induced acute kidney injury without interfering with chemotherapeutic agents. |
---|