Multitrait machine‐ and deep‐learning models for genomic selection using spectral information in a wheat breeding program
Abstract Prediction of breeding values is central to plant breeding and has been revolutionized by the adoption of genomic selection (GS). Use of machine‐ and deep‐learning algorithms applied to complex traits in plants can improve prediction accuracies. Because of the tremendous increase in collect...
Guardado en:
Autores principales: | Karansher Sandhu, Shruti Sunil Patil, Michael Pumphrey, Arron Carter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af5dd8233cd340e3a2bc7acfae77f353 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of genomic selection models for exploring predictive ability of complex traits in breeding programs
por: Lance F. Merrick, et al.
Publicado: (2021) -
Environment characterization and genomic prediction for end‐use quality traits in soft white winter wheat
por: Meriem Aoun, et al.
Publicado: (2021) -
Accelerating wheat breeding for end‐use quality through association mapping and multivariate genomic prediction
por: Shichen Zhang‐Biehn, et al.
Publicado: (2021) -
Genomic selection of parents and crosses beyond the native gene pool of a breeding program
por: Sebastian Michel, et al.
Publicado: (2021) -
A near‐complete genome sequence of mungbean (Vigna radiata L.) provides key insights into the modern breeding program
por: Jungmin Ha, et al.
Publicado: (2021)