Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning

Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.

Guardado en:
Detalles Bibliográficos
Autores principales: Daqi Wang, Chengdong Zhang, Bei Wang, Bin Li, Qiang Wang, Dong Liu, Hongyan Wang, Yan Zhou, Leming Shi, Feng Lan, Yongming Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.