Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:af6085e1eb2a47c8a310ffae8ee6902f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:af6085e1eb2a47c8a310ffae8ee6902f2021-12-02T15:36:02ZOptimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning10.1038/s41467-019-12281-82041-1723https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f2019-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12281-8https://doaj.org/toc/2041-1723Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.Daqi WangChengdong ZhangBei WangBin LiQiang WangDong LiuHongyan WangYan ZhouLeming ShiFeng LanYongming WangNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Daqi Wang Chengdong Zhang Bei Wang Bin Li Qiang Wang Dong Liu Hongyan Wang Yan Zhou Leming Shi Feng Lan Yongming Wang Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning |
description |
Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes. |
format |
article |
author |
Daqi Wang Chengdong Zhang Bei Wang Bin Li Qiang Wang Dong Liu Hongyan Wang Yan Zhou Leming Shi Feng Lan Yongming Wang |
author_facet |
Daqi Wang Chengdong Zhang Bei Wang Bin Li Qiang Wang Dong Liu Hongyan Wang Yan Zhou Leming Shi Feng Lan Yongming Wang |
author_sort |
Daqi Wang |
title |
Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning |
title_short |
Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning |
title_full |
Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning |
title_fullStr |
Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning |
title_full_unstemmed |
Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning |
title_sort |
optimized crispr guide rna design for two high-fidelity cas9 variants by deep learning |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f |
work_keys_str_mv |
AT daqiwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT chengdongzhang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT beiwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT binli optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT qiangwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT dongliu optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT hongyanwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT yanzhou optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT lemingshi optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT fenglan optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning AT yongmingwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning |
_version_ |
1718386374745260032 |