Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning

Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.

Guardado en:
Detalles Bibliográficos
Autores principales: Daqi Wang, Chengdong Zhang, Bei Wang, Bin Li, Qiang Wang, Dong Liu, Hongyan Wang, Yan Zhou, Leming Shi, Feng Lan, Yongming Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:af6085e1eb2a47c8a310ffae8ee6902f
record_format dspace
spelling oai:doaj.org-article:af6085e1eb2a47c8a310ffae8ee6902f2021-12-02T15:36:02ZOptimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning10.1038/s41467-019-12281-82041-1723https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f2019-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12281-8https://doaj.org/toc/2041-1723Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.Daqi WangChengdong ZhangBei WangBin LiQiang WangDong LiuHongyan WangYan ZhouLeming ShiFeng LanYongming WangNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Daqi Wang
Chengdong Zhang
Bei Wang
Bin Li
Qiang Wang
Dong Liu
Hongyan Wang
Yan Zhou
Leming Shi
Feng Lan
Yongming Wang
Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
description Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.
format article
author Daqi Wang
Chengdong Zhang
Bei Wang
Bin Li
Qiang Wang
Dong Liu
Hongyan Wang
Yan Zhou
Leming Shi
Feng Lan
Yongming Wang
author_facet Daqi Wang
Chengdong Zhang
Bei Wang
Bin Li
Qiang Wang
Dong Liu
Hongyan Wang
Yan Zhou
Leming Shi
Feng Lan
Yongming Wang
author_sort Daqi Wang
title Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
title_short Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
title_full Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
title_fullStr Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
title_full_unstemmed Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
title_sort optimized crispr guide rna design for two high-fidelity cas9 variants by deep learning
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f
work_keys_str_mv AT daqiwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT chengdongzhang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT beiwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT binli optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT qiangwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT dongliu optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT hongyanwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT yanzhou optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT lemingshi optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT fenglan optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
AT yongmingwang optimizedcrisprguidernadesignfortwohighfidelitycas9variantsbydeeplearning
_version_ 1718386374745260032