Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
Application of highly specific Cas9 variants can be restricted by the design of the guide RNA. Here the authors present DeepHF, a gRNA activity prediction tool built from genome-scale screens of 50,000 guides covering 20,000 genes.
Guardado en:
Autores principales: | Daqi Wang, Chengdong Zhang, Bei Wang, Bin Li, Qiang Wang, Dong Liu, Hongyan Wang, Yan Zhou, Leming Shi, Feng Lan, Yongming Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af6085e1eb2a47c8a310ffae8ee6902f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells
por: Yifang Xie, et al.
Publicado: (2017) -
CROP: a CRISPR/Cas9 guide selection program based on mapping guide variants
por: Victor Aprilyanto, et al.
Publicado: (2021) -
Optimization of genome engineering approaches with the CRISPR/Cas9 system.
por: Kai Li, et al.
Publicado: (2014) -
RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors
por: Pratiksha I. Thakore, et al.
Publicado: (2018) -
High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis
por: Xingbo Xu, et al.
Publicado: (2018)